قوس الظل
قالب:صندوق معلومات دالة رياضية
في الرياضيات، دالة قوس الظل [١][٢] قالب:إنج لعدد حقيقي المعرفة على هي الدالة العكسية لدالة الظل، مستقرها هو ، وحدتها هي الراديان.
الدالة التي ترفق بكل عدد حقيقي، قيمة قوس الظل الخاص به يرمز لها بـ arctan أو قالب:تعبير رياضي. ومن ثم تكون الدالة العكسية لدالة الظل المثلثية المقتصرة إلى المجال .
في المَعْلم الديكارتي المتعامد والمتجانس (متعامد ممنظم) للمستوي، يتم الحصول على التمثيل البياني لدالة قوس ظل الزاوية انطلاقا من التمثيل البياني لدالة الظل المقتصرة إلى المجال بانعكاس حول المحور ذو المعادلة قالب:تعبير رياضي.
مشتق
دالة الظل العكسية تقبل الإشتقاق على ودالتها المشتقة هي:
إثبات
يمكننا كتابة مشتقة الدالة بهذه الصيغة:
نضع :
إثبات آخر
يمكن استنتاج مشتقة قوس الظل كالتالي:
1. معلوم أن tan(arctan(x))=x بتفاضل الطرفين:
نحصل على :
بتبسيط tan(arctan(x)) نحصل على:
و بترتيب التعبير نحصل على مشتقة دالة قوس الظل :
تمثيل بواسطة متسلسلة
يمكننا تمثيل الدالة بواسطة متسلسلة تايلور:
- .
المشتق العكسي
يتم الحصول على المشتق العكسي لدالة قوس الظل عن طريق التكامل بالتجزئة :
على المستوي العقدي
الشكل اللوغاريتمي
يمكننا التعبير عن دالة قوس الظل باستخدام اللوغاريتم العقدي:
حيث هي دالة الظل الزائدية العكسية.
تمثيل الدالة العقدية
