نسبة تبادلية

في الهندسة الرياضية، النسبة التبادلية[١][٢][٣] قالب:إنج هي نسبةٌ مُرتبطةٌ بأربعِ نقاطٍ مُتسامتة. إذا كانت النقاط على استقامةٍ واحدةٍ، فإنَّ نسبتهم التبادلية تُعرّف كالآتي:[٤]
حيث أنَّ النّسب نسبٌ مُوجّهةٌ. إذا كانت واحدة من النقاط الأربع نقطةً في اللانهاية، فإنَّ المسافتين الواصلتين بهذه النقطة تُحذف من الصيغة. تُعرّفُ النقطة D على أنّها المرافق التوافقي للنقطة C بالنسبة لـA و B.
دائرة أبولونيوس
تُعمم النسبة التبادلية لتشمل الدائرة بتعريف المستوى العقدي بالصيغة الآتية: . إذا كانت النقاط مُتسامتةً في المستوى العقدي كما الشكل، فإنَّ دائرة أبولونيوس لهذه الثلاث نقاط هي مجموعة النقاط التي تحقق أن معيار النسبة التبادلية مساوية لواحد.. بمعنىً آخر: هي نقطة على دائرة أبولونيوس للنقاط إذا وفقط إذا كان معيار النسبة التبادلية مساوياً للواحد.[٥][٦][٧]

النسب التوافقية
تُعرّفُ النقطة على أنّها المرافق التوافقي للنقطة بالنسبة لـ و. إذا كانت النسبة التوافقية للنقاط الأربع تساوي . وتُسمَّى حينئذٍ نسبةً توافقية. ونتيجةً لذلك، فإنَّ النسبة التبادلية بالإمكان اعتبارها على أنها مدى بُعدِ الأربع نقاط عن النسبة التوافقية.[٤] النسبة التبادلية مُعرّفة منذ القِدَم، حيث يرجّح أن إقليدس هو أوّل من ذكرها، كما استعملها ببس الرومي الذي لاحظ خاصيّة ثباتها تحت التحويلات الخطية. فالنسبة التبادلية لأيِّ قطعةٍ مُستقيمةٍ تقطع 4 مستقيمات متلاقية هي ثابتة. بشكلٍ مُكافئ، يُعرّفُ ذلكَ في الهندسة الإسقاطية على أنَّ النسبة التبادلية ثابتةٌ تحت أي تحويلٍ خطيٍ كسريٍ.[٤] في تعريفِ أبولونيوس للدائرة، تُسمَّى الخطوط «حُزمة توافقية» وهي كل مجموعة خطوط متلاقية نسبتها توافقية (أي: نسبتها التبادلية تساوي ). إنَّ تقاطعَ حُزمةٍ توافقيةٍ مع الدائرة يُنتجُ رباعياً توافقياً.[٨]
معرض صور
-
النسبة التناغمية في الهندسة الإسقاطية ، هي النسبة الموجودة بين أربع نقاط متسامتة (A,B,C,D)، التي علاقتها التبادلية تسمى رباعية تناغمية. يمكن إنشاء هذه الرباعية بدءًا من رباعي أضلاع M,N,L,K
مراجع
انظر أيضاً
وصلات خارجية
- ↑ قالب:استشهاد ويب
- ↑ قالب:استشهاد ويب
- ↑ قالب:استشهاد ويب
- ↑ ٤٫٠ ٤٫١ ٤٫٢ قالب:استشهاد بكتاب
- ↑ Courant and Robbins 1996, p. 172; Durell 1928, p. 73
- ↑ قالب:استشهاد ويب
- ↑ H. S. M. Coxeter and S. L. Greitzer.Geometry revisited, volume 19 ofNew MathematicalLibrary. Random House, Inc., New York, 1967.
- ↑ The Associated Harmonic Quadrilateral, Paris Pamfilos, Forum Geometricorum, Volume 14 (2014) 15–29.