مشكلة ماشية أرخميدس
قالب:مقالة غير مراجعة قالب:بطاقة عامة مشكلة ماشية أرخميدس (أو مشكلة الأبقار أو مشكلة أرخميدس ) هي مشكلة في تحليل ديوفانتين ، دراسة معادلات كثيرة الحدود مع حلول صحيحة . تنسب المشكلة إلى أرخميدس ، وتتضمن حساب عدد الماشية في قطيع إله الشمس مع مجموعة معينة من القيود. تم اكتشاف المشكلة بواسطة إفرايم ليسينغ في مخطوطة يونانية تحتوي على قصيدة من أربعة وأربعين سطرًا ، في مكتبة هرتسوغ أغسطس في فولفنبوتل، ألمانيا عام 1773. [١]
ظلت المشكلة دون حل لعدة سنوات ، ويرجع ذلك جزئيًا إلى صعوبة حساب الأعداد الضخمة التي ينطوي عليها الحل. تم إيجاد الحل العام في عام 1880 بواسطة كارل إرنست أوغست أمثور (1845–1916) في دريسدن ، ألمانيا. [٢] [٣] [٤] باستخدام الجداول اللوغاريتمية ، قام بحساب الأرقام الأولى من أصغر حل ، موضحا أنه تقريبا يساوي ماشية، أكثر بكثير مما يمكن أن يتم استيعابه في الكون المرئي . [٥] الصيغة العشرية طويلة جدًا بحيث لا يستطيع البشر حسابها بالضبط ، ولكن يمكن للحزم الحسابية الدقيقة المتعددة على أجهزة الكمبيوتر كتابتها بشكل صريح.
التاريخ
في عام 1769 ، تم تعيين إفرايم ليسينغ أمين مكتبة هرتسوغ أغسطس في فولفنبوتل ، ألمانيا ، والتي تحتوي على العديد من المخطوطات اليونانية واللاتينية. [٦] بعد بضع سنوات ، نشر ليسينغ ترجمات لبعض المخطوطات مع التعليقات. من بينها قصيدة يونانية من أربعة وأربعين سطرًا ، تحتوي على مشكلة حسابية تطلب من القارئ العثور على عدد الماشية في قطيع إله الشمس. وتنسب الآن بشكل عام إلى أرخميدس. [٧] [٨]
المشكلة
المشكلة ، من اختصار الترجمات الألمانية التي نشرها جورج نيسلمان في عام 1842 ، و كرومبيجل في عام 1880 ، تنص على:
احسب ، يا صديقي ، عدد ماشية الشمس التي كانت ترعى ذات مرة على سهول صقلية ، مقسمة حسب اللون إلى أربعة قطعان ، واحدة من لون الحليب الأبيض ، وواحدة سوداء ، وواحدة مرقطة وأخرى صفراء. عدد الثيران أكبر من عدد الأبقار ، والعلاقة بينهما هي:
- الثيران البيضاء الثيران السوداء + الثيران الصفراء ،
- الثيران السوداء الثيران مرقطة + الثيران صفراء ،
- الثيران المرقطة الثيران بيضاء + الثيران صفراء ،
- الأبقار البيضاء القطيع الأسود ،
- الأبقار السوداء القطيع المرقط ،
- الأبقار المرقطة القطيع الأصفر ،
- الأبقار الصفراء القطيع الأبيض.
إذا استطعت أن تعطي ، أيها الصديق ، عدد كل نوع من الثيران والأبقار ، فأنت لست مبتدئًا في الأرقام ، ولكن لا يمكن اعتبارك ذي مهارة عالية. ضع في اعتبارك العلاقات الإضافية التالية بين ثيران الشمس:
إذا قمت أيضًا بحساب هذه أيضًا ، يا صديقي ، ووجدت العدد الإجمالي للماشية ، ابتهج كفاتح، لأنك أثبت أنك الأكثر مهارة في الأرقام. [٩]
الحل
يمكن حل الجزء الأول من المشكلة بسهولة عن طريق إنشاء نظام المعادلات . إذا كان عدد الثيران البيضاء والسوداء والمرقطة والصفراء مكتوبًا و ، ويكتب عدد الأبقار البيضاء والسوداء والمرقطة والأصفر و ، المشكلة تكمن ببساطة في إيجاد حل لـ:
وهو نظام من سبع معادلات مع ثمانية مطلوبات مجهولة. وهو نظام غير محدد ولديه ما لا نهاية من الحلول. أقل الأعداد الصحيحة الإيجابية التي تحقق المعادلات السبع هي:
وهو ما مجموعه 50،389،082 من الماشية [٩] والحلول الأخرى هي مضاعفات لا يتجزأ منها. لاحظ أن الأرقام الأربعة الأولى هي مضاعفات 4657 ، وهي قيمة ستظهر بشكل متكرر أدناه.
تم العثور على الحل العام للجزء الثاني من المشكلة لأول مرة بواسطة أ. أمثور [١٠] في عام 1880. تم وصف النسخة التالية منه بواسطة هندريك لنسترا، [٥] استنادًا إلى معادلة بيل : يجب أن يتم ضرب الحل المذكور أعلاه للجزء الأول من المشكلة في
حيث أن
و j هي أي عدد صحيح موجب. مكافئ، لتربيع w الناتج من
حيث أن { u ، v } هي الحلول الأساسية لمعادلة بيل
حجم أصغر قطيع يمكن أن يرضي كلا الجزأين الأول والثاني من المشكلة يتم إعطاؤه بواسطة j = 1 ، وهو حوالي (حلها أمثور أولاً). يمكن لأجهزة الكمبيوتر الحديثة بسهولة طباعة جميع أرقام الإجابة. تم ذلك لأول مرة في جامعة واترلو ، في عام 1965 بواسطة هيو ويليامز ، ر.أ. جيرمان ، وتشارلز روبرت زارنك. استخدموا مزيجًا من أجهزة الكمبيوتر IBM 7040 وIBM 1620 . [١١]
معادلة بيل
إن قيود الجزء الثاني من المشكلة واضحة ويمكن إعطاء معادلة بيل الفعلية التي تحتاج إلى حل بسهولة. أولاً ، يطلب أن يكون W+B مربعًا ، أو باستخدام القيم الواردة أعلاه ،
وبالتالي يجب على المرء تعيين
k = (3) (11) (29) (4657) q 2
لبعض العدد الصحيح q . هذا يحل الشرط الأول. ثانيًا ، يتطلب أن يكون D + Y رقمًا مثلثًا ،
الحل من أجل t ،
استبدال قيمة D + Y و k وإيجاد قيمة q 2 بحيث أن المييز في هذه المعادلة من الدرجة الثانية هو مربع مثالي p 2 يستلزم حل معادلة بيل ،
كان نهج أمثور الذي تمت مناقشته في القسم السابق أساسيًا للعثور على أصغر v بحيث يمكن تقسيمه بشكل متكامل على 2 · 4657. الحل الأساسي لهذه المعادلة يحتوي على أكثر من 100000 رقم.
المراجع
قراءة متعمقة
- قالب:استشهاد
- قالب:استشهاد بكتاب
- قالب:استشهاد بدورية محكمة
- قالب:استشهاد بدورية محكمة
- قالب:استشهاد بدورية محكمة
روابط خارجية
- قالب:OEIS el - الحل العشري الكامل للمشكلة الثانية
- قالب:استشهاد ويب
قالب:ضبط استنادي قالب:شريط بوابات قالب:أرخميدس
- ↑ قالب:استشهاد بكتاب
- ↑ قالب:استشهاد بدورية محكمة
- ↑ Biographical information about August Amthor:
- ↑ The problem was solved independently in 1895 by Adam Henry Bell, a surveyor and civil engineer of Hillsboro, Illinois, USA. See:
- ↑ ٥٫٠ ٥٫١ قالب:استشهاد
- ↑ قالب:استشهاد ويب
- ↑ قالب:استشهاد بكتاب
- ↑ قالب:استشهاد بكتاب
- ↑ ٩٫٠ ٩٫١ قالب:استشهاد بدورية محكمة
- ↑ B. Krumbiegel, A. Amthor, Das Problema Bovinum des Archimedes, Historisch-literarische Abteilung der Zeitschrift für Mathematik und Physik 25 (1880) 121–136, 153–171.
- ↑ قالب:استشهاد ويب (includes pictures)