ملف:Quantum ideal gas pressure 3d.svg
من testwiki
اذهب إلى التنقل
اذهب إلى البحث
حجم معاينة PNG لذلك الملف ذي الامتداد SVG: ٢٨٨ × ٢٢١ بكسل. الأبعاد الأخرى: ٣١٣ × ٢٤٠ بكسل | ٦٢٦ × ٤٨٠ بكسل | ١٬٠٠١ × ٧٦٨ بكسل | ١٬٢٨٠ × ٩٨٢ بكسل | ٢٬٥٦٠ × ١٬٩٦٤ بكسل.
الملف الأصلي (ملف SVG، أبعاده ٢٨٨ × ٢٢١ بكسل، حجم الملف: ١٧ كيلوبايت)
هذا الملف من ويكيميديا كومنز ويمكن استخدامه بواسطة المشاريع الأخرى. الوصف على صفحة وصف الملف هناك معروض بالأسفل.
ملخص
| الوصفQuantum ideal gas pressure 3d.svg |
English: Pressure of classical ideal gas and quantum ideal gases (Fermi gas, Bose gas) as a function of temperature, for a fixed density of particles. This is for the case of non-relativistic (massive, slow) particles in three dimensions.
Русский: Давление классического и квантовых газов (Ферми и Бозе) в зависимости от температуры.
A few features can be seen:
The figure has been scaled in a way that the particle degeneracy factor, density, mass, etc. are all factored out and irrelevant. This is part of a family of plots:
|
| التاريخ | |
| المصدر | عمل شخصي |
| المؤلف | Nanite |
| إصدارات أخرى |
|
| SVG منشأ الملف InfoField | |
| نص برمجي مصدري InfoField | Python code#!/usr/bin/env python3
import numpy as np
from matplotlib import pyplot as plt
import mpmath
import sys
def fixpoly(s,x):
# The mpmath polylog sometimes returns a tiny spurious imaginary part, and
# it throws exceptions for weird cases. Clean this up.
try:
return np.real(mpmath.fp.polylog(s,x))
except (OverflowError, ValueError):
return np.nan
polylog = np.vectorize(fixpoly, otypes=[float])
# assumed density of states G(E) = V * g_0 * (E - E_0) ^ (alpha - 1) / Gamma(alpha)
# as appropriate for 3D, nonrelativistic, massive particles.
# The prefactor g_0 includes things like spin degeneracy, mass, planck constant, factors of pi, etc.
# V is volume of the system (where applicable - for particles in harmonic well,
# just make sure V*g_0 is the right value).
# We will only plot things that are independent of V and g_0, and we assume E_0 = 0.
# The key parameter in this density of states is alpha.
# for massive particle in a box, alpha = dimensionality/2
# for particle in a harmonic well, alpha = dimensionality
# for hyperrelativistic particles in a box, alpha = dimensionality
if len(sys.argv) > 1:
# allow massive-particle-in-box dimensionality to be provided as command line arg
alpha = float(sys.argv[1]) / 2
else:
# default to 3D massive case:
alpha = 1.5
# For the above density of states function, our three ideal gases are easily calculated
# in grand canonical ensemble, yielding the following grand potential:
# Omega = - V * g_0 * (kT)^(alpha + 1) * I(alpha, mu/kT)
# where I(s,t) is an integral depending on the statistics.
#
# Fermi gas has I = fdint(s, t), the complete fermi-dirac integral,
# I(s,t) = fdint(s, t) = -polylog(s + 1, -exp(t))
# Bose gas (only valid for mu <=0) has I = beint(s, t), the complete bose-einstein integral,
# I(s,t) = beint(s, t) = +polylog(s + 1, +exp(t))
# The classical ideal gas has simply:
# I(s,t) = exp(t)
#
# Note that our generic I(s,t) obeys in all cases:
# d/dt I(s, t) = I(s-1, t)
# so:
# d/d(mu) I(s, mu/kT) = (1/kT) I(s-1, mu/kT)
# d/d(T) I(s, mu/kT) = -(mu/kT)^2 I(s-1, mu/kT)
# which will make it very easy to compute the various derivative quantities.
# Quantities:
# Pressure P = -d(Omega)/d(V) = -Omega/V
# Particle number N = -d(Omega)/d(mu)
# Entropy S = -d(Omega)/d(T)
# Compressibility uses d^2(Omega)/d(mu)^2, and we will represent via bulk modulus (see below)
#
# Using the I(s,t) derivation these derivatives are easy to compute:
# N = V * g_0 * (kT)^(alpha) * I(alpha - 1 , mu/kT)
# S = k * N * ( (alpha + 1) * I(alpha, mu/kT) / I(alpha-1, mu/kT) - mu/kT )
#
# Unfortunately, there is no analytic formula for mu in terms of N, only the other way.
# This is unfortunate since we want to plot temperature-dependence of a system
# with fixed N and fixed V.
# However we can see that both P and N are functions of kT and mu/kT. So, we can
# sweep the value of mu/kT, and then for each point, calculate the T value for the
# N/V we have chosen. That means turning the above N relation into a definition
# for T:
# kT = [(N/V) / (I(alpha - 1, mu/kT) * g_0)]^(1/alpha)
# Finally, we will construct some reference quantities just to nondimensionalize
# the plots. We will define the following convenient reference temperature T' based
# on our fixed density N/V:
# kT' = [(N/V) / g_0]^(-1/alpha)
# (Very roughly speaking, this is the temperature at which the thermal de broglie
# wavelength is comparable to the distance between identical particles.)
#
# So our plotted x axis quantity will be:
# T/T' = kT/kT' = (I(alpha - 1, mu/kT))^(1/alpha)
# The Fermi temperature and Bose temperature are constant multiples of T',
# so they are fixed reference points on the x axis (though they move around
# depending on alpha).
#
# Likewise, a reference pressure to match this temperature and density:
# P' = N k T' / V
# = g_0 (kT')^(alpha + 1)
# So our pressure plot y axis will be:
# P/P' = (T/T')^(alpha + 1) * I(alpha, mu/kT)
# Bulk modulus (isothermal)
# K = V (\partial P/\partial V)_{N,T}
# = (N/V)^2 / (d^2(P)/d(mu)^2)_{V,T})
# = g_0 * (kT)^(alpha+1) * I(alpha - 1 , mu/kT)^2/I(alpha - 2, mu/kT)
# (for fermi gas, similar for bose)
# and it has pressure units so we plot dimensionless:
# K/P' = (T/T')^(alpha + 1) * I(alpha - 1 , mu/kT)^2/I(alpha - 2, mu/kT)
# Program variables used below:
# z = exp(mu/kT)
# T refers to T/T', where T' defined above.
# P refers to P/P', where P' defined above.
# S refers to S/(N.k)
# mu refers to mu/(kT') = (mu/kT) * (T/T')
# K refers to K/P'
# Pressure vs temperature graph
fig1 = plt.figure()
fig1.set_size_inches(3,2.3)
ax1 = plt.axes((0.09, 0.17, 0.90, 0.82))
# Entropy vs temperature graph
fig2 = plt.figure()
fig2.set_size_inches(3,2.3)
ax2 = plt.axes((0.18, 0.17, 0.81, 0.82))
# Chemical potential vs temperature graph
fig3 = plt.figure()
fig3.set_size_inches(3,2.3)
ax3 = plt.axes((0.15, 0.17, 0.84, 0.82))
# Bulk modulus vs temperature graph
fig4 = plt.figure()
fig4.set_size_inches(3,2.3)
ax4 = plt.axes((0.09, 0.17, 0.90, 0.82))
#####
# Fermi gas
# sweep z; make the last point to be almost T=0
z = np.exp(np.linspace(-2, 20, 201))
z[-1] = 1e100
I_m0 = -polylog(alpha + 1, -z)
I_m1 = -polylog(alpha, -z)
I_m2 = -polylog(alpha - 1, -z)
T = I_m1 ** (-1./alpha)
P = (T)**(alpha + 1) * I_m0
S = (alpha+1) * (I_m0 / I_m1) - np.log(z)
K = (T)**(alpha + 1) * I_m1**2 / I_m2
mu = np.log(z) * T
# Define 0-temperature and extend traces to exactly T=0
T_fermi = mpmath.fp.gamma(alpha+1) ** (1./alpha)
P_fermi = T_fermi / (alpha+1)
K_fermi = T_fermi / (alpha)
T = np.concatenate((T, [0.]))
P = np.concatenate((P, [P_fermi]))
S = np.concatenate((S, [0.]))
K = np.concatenate((K, [K_fermi]))
mu = np.concatenate((mu, [T_fermi]))
color_fermi = '#1f77b4'
for ax,y in [(ax1,P),(ax2,S),(ax3,mu),(ax4,K)]:
ax.plot(T,y, label="Fermi", color=color_fermi)
# Draw fermi temperature line by drawing dashed line up to the trace
y_at_T_fermi = np.interp(T_fermi, T[::-1], y[::-1])
ax.plot([T_fermi, T_fermi], [y_at_T_fermi, -100 ], color=color_fermi, lw=1, ls=(0, (1,5)))
#####
# Ideal gas
# This is trivial, but for consistency, calculate
# it similarly to the bose and fermi cases.
z = np.exp(np.linspace(-2, 20, 200))
I_m0 = I_m1 = I_m2 = z
T = I_m1 ** (-1./alpha)
P = (T)**(alpha + 1) * I_m0
S = (alpha+1) * (I_m0 / I_m1) - np.log(z)
K = (T)**(alpha + 1) * I_m1**2 / I_m2
mu = np.log(z) * T
# extend traces to exactly T=0
T = np.concatenate((T, [0.]))
P = np.concatenate((P, [0.]))
S = np.concatenate((S, [-np.inf]))
mu = np.concatenate((mu, [0.]))
K = np.concatenate((K, [0]))
color_classical = '#ff7f0e'
for ax,y in [(ax1,P),(ax2,S),(ax3,mu),(ax4,K)]:
ax.plot(T,y, label="classical", color=color_classical)
#####
# Bose gas
# Approach mu=0 from below, making sure to include the last floating point
# number smaller than 1.
z = np.concatenate((np.linspace(0.01, 0.99, 99), [0.999, 0.9999, 1 - 1e-16]))
#z = 1 - np.exp(np.linspace(-0.1, -34, 200))
#z = np.exp(np.linspace(-2, -1e-15, 100))
I_m0 = polylog(alpha + 1, +z)
I_m1 = polylog(alpha, +z)
I_m2 = polylog(alpha - 1, +z)
T = I_m1 ** (-1./alpha)
P = (T)**(alpha + 1) * I_m0
S = (alpha+1) * (I_m0 / I_m1) - np.log(z)
K = (T)**(alpha + 1) * I_m1**2 / I_m2
mu = np.log(z) * T
if alpha > 1:
# In >2 dimensions, the bose gas starts condensing at nonzero temperature,
# right at the point when mu=0.
Tcrit = (polylog(alpha, 1)) ** (-1./alpha)
Pcrit = (Tcrit)**(alpha + 1) * polylog(alpha + 1, 1)
Scrit = (alpha+1) * polylog(alpha + 1, 1)/polylog(alpha, 1)
# What about T < Tcrit?
# Basically now mu is pinned to 0. It cannot go any higher because that would
# mean infinite particles in every state with energy below mu.
# Instead as temperature lowers, mu stays at 0 and the particle number in the
# continuum of states with energy above mu will drop accordingly.
# The continuum is called the 'noncondensed phase'; the particles that
# have disappeared have all necessarily gone into some lowest-energy state
# that is infinitesimally above mu, the 'condensed phase'.
# So, let's set mu=0, and drop our constraint on N, and calculate the pressure
# from the continuum phase just as before. (the condensed phase contributes
# no pressure, in macroscopic ideal gas).
z2 = 1.
I_m0 = polylog(alpha + 1, z2)
T2 = np.linspace(Tcrit, 0, 101)
P2 = T2 ** (alpha + 1) * I_m0
# In the case of entropy "S/Nk", we have to be careful since now the total N' is
# distinct from our continuum N (excited).
S2 = T2 ** alpha * (alpha+1) * I_m0
K2 = 0*T2
mu2 = 0*T2
else:
# In <= 2 dimensions, just tack on a single data point for 0 temperature.
T2=np.array([0.])
P2=0*T2
S2=0*T2
K2 = 0*T2
mu2 = 0*T2
# concatenate to existing traces
T = np.concatenate((T, T2))
P = np.concatenate((P, P2))
S = np.concatenate((S, S2))
mu = np.concatenate((mu, mu2))
K = np.concatenate((K, K2))
color_bose = '#2ca02c'
for ax,y,ycrit in [(ax1,P,P2[0]),(ax2,S,S2[0]),(ax3,mu,mu2[0]),(ax4,K,K2[0])]:
ax.plot(T,y, label="Bose", color=color_bose)
if alpha > 1 and ycrit is not None:
# Mark the critical temperature with a * and a vertical line.
ax.plot([Tcrit],[ycrit], '*', color='k', ms=12, mew=0, alpha=0.6, zorder=0)
ax.plot([Tcrit, Tcrit], [ycrit, -100 ], color=color_bose, lw=1, ls=(0, (4,2)))
#####
# set view ranges
Tmin = -0.03
Tmax = 1.8
ax1.set_ylim(Tmin,Tmax)
yrange = 0.2 + 1 + (1 + np.log(1.8))*alpha # range to fit the right side
ax2.set_ylim(-0.4*yrange, +yrange)
yrange = 1.5 + 0.7*alpha
ax3.set_ylim(-yrange, +0.6*yrange)
ax4.set_ylim(Tmin,Tmax)
# format temperature axis nicely
for ax in [ax1, ax2, ax3, ax4]:
ax.set_xlim(Tmin,Tmax)
ax.set_xlabel('temperature', labelpad=0)
tl = []
tl.append((0, "0", 'k'))
if alpha > 1:
tl.append((Tcrit, r"$T_{\rm B}$", color_bose))
tl.append((T_fermi, r"$T_{\rm F}$", color_fermi))
ticks, labels, colors = zip(*tl)
ax.set_xticks(ticks)
ax.set_xticklabels(labels)
for label,color in zip(ax.xaxis.get_ticklabels(), colors):
label.set_color(color)
ax1.set_yticks([0])
ax1.set_ylabel('pressure', labelpad=-5)
ax1.legend(loc='lower right')
fig1.savefig('quantum ideal gas pressure %gd.svg'%(alpha*2,))
ax2.set_ylabel('entropy per particle $S/Nk$')
ax2.legend(loc='lower right')
fig2.savefig('quantum ideal gas entropy %gd.svg'%(alpha*2,))
ax3.set_yticks([0])
ax3.set_yticklabels([r'$\varepsilon_0$'])
ax3.set_ylabel('chemical potential $\\mu$')
ax3.legend(loc='lower left')
fig3.savefig('quantum ideal gas chemical potential %gd.svg'%(alpha*2,))
ax4.set_yticks([0])
ax4.set_ylabel(r'bulk modulus $K_{T}$', labelpad=-5)
ax4.legend(loc='lower right')
fig4.savefig('quantum ideal gas bulk modulus %gd.svg'%(alpha*2,))
|
ترخيص
أنا، صاحب حقوق التأليف والنشر لهذا العمل، أنشر هذا العمل تحت الرخصة التالية:
| هذا الملف متوفر تحت ترخيص المشاع الإبداعي CC0 1.0 الحقوق العامة. | |
| لقد وَضَعَ صاحب حقوق التَّأليف والنَّشر هذا العملَ في النَّطاق العامّ من خلال تنازُلِه عن حقوق العمل كُلِّها في أنحاء العالم جميعها تحت قانون حقوق التَّأليف والنَّشر، ويشمل ذلك الحقوق المُتَّصِلة بها والمُجاورة لها برمتها بما يتوافق مع ما يُحدده القانون. يمكنك نسخ وتعديل وتوزيع وإعادة إِنتاج العمل، بما في ذلك لأغراضٍ تجاريَّةٍ، دون حاجةٍ لطلب مُوافَقة صاحب حقوق العمل.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
الشروحات
أضف شرحاً من سطر واحد لما يُمثِّله هذا الملف
Pressure of classical ideal gas and quantum ideal gases (Fermi gas, Bose gas) in three dimensions as a function of temperature, for a fixed density of particles.
Давление классического и квантовых газов (Ферми и Бозе) в зависимости от температуры.
العناصر المصورة في هذا الملف
يُصوِّر
قيمة ما بدون عنصر ويكي بيانات
٢٣ يونيو 2020
image/svg+xml
١٩٬٣٤١ بايت
٢٠٧ بكسل
٢٧٠ بكسل
eb6bae6cf5dc7706fe2c1180ae2380a72f46112b
تاريخ الملف
اضغط على زمن/تاريخ لرؤية الملف كما بدا في هذا الزمن.
| زمن/تاريخ | صورة مصغرة | الأبعاد | مستخدم | تعليق | |
|---|---|---|---|---|---|
| حالي | ٢٣:٢٨، ١٨ ديسمبر ٢٠٢٥ | ٢٨٨ × ٢٢١ (١٧ كيلوبايت) | wikimediacommons>Nanite | slight tweak to (0,0) position |
استخدام الملف
الصفحة التالية تستخدم هذا الملف: