ملف:CIE1931xy blank.svg

من testwiki
اذهب إلى التنقل اذهب إلى البحث
الملف الأصلي (ملف SVG، أبعاده ٤٩٥ × ٥٢٦ بكسل، حجم الملف: ٦ كيلوبايت)

هذا الملف من ويكيميديا كومنز ويمكن استخدامه بواسطة المشاريع الأخرى. الوصف على صفحة وصف الملف هناك معروض بالأسفل.

ملخص

الوصف
English: CIE 1931 xy color space diagram. Drawn (or rather programmatically generated) from scratch, but the visual design is Own work based on: CIExy1931.png مِن PAR. Major differences:
  • Colors outside the sRGB triangle are clipped toward the sRGB white point, so they have more accurate hues. The original image (and most other images of this type) clips each sRGB channel independently to zero, which among other things leads to the whole top of the diagram being colored #0F0 (sRGB primary green) when it should be more of a cyan.
  • Luminance inside the triangle was reduced somewhat. Maximum luminance (the infinity norm) creates a three-pointed star artifact (the lines are #FF0, #F0F and #0FF). Constant luminance (1-norm) looks rather dull. An intermediate p-norm makes nice-looking results without the star. This background image uses p=5. Gone with the star is the clearly defined white of the D65 white point, which is also an sRGB artifact.
  • Blurring of the sRGB triangle edges to hide artifacts there. This means the colors near the boundary are slightly less accurate (not maximally saturated). I prefer this to the line artifacts, but it's an issue that could be debated.
  • Labels at uniform 20nm intervals; left out 380nm and 700nm because the locus doesn't really stop there or anywhere, it just fades into nothingness; no grid on the region; random tweaks, etc.
التاريخ
المصدر Own work based on: CIExy1931.svg مِن Sakurambo
المؤلف BenRG
إصدارات أخرى

أَعمالٌ مُشتقَّة مِن هذا الملفِّ:

SVG منشأ الملف
InfoField
 الشيفرة المصدرية لهذا الرسم المتجه صالحة.
 هذا الرسم المتجهي أُنشئ بواسطة unknown tool
  This diagram uses embedded text that can be easily translated using a text editor.

ترخيص

Public domain وضع -BenRG-، وهو المؤلف، هذا العمل في النِّطاق العامِّ. يسري ذلك في كل أرجاء العالم.
في بعض البلدان، قد يكون هذا التَّرخيص غيرَ مُمكنٍ قانونيَّاً، في هذه الحالة:
يمنح BenRG الجميع حق استخدام هذا العمل
لأي غرض دون أي شرط ما لم يفرض القانون شروطًا إضافية.

Perl code

use strict;
use Svg;
use List::Util qw(min);

my @primaries;
my $whitepoint = '';
my $filename;

if (1) {
	$filename = 'CIE1931xy_blank.svg';
} elsif (0) {
	$filename = 'CIE1931xy_sRGB.svg';
	@primaries = ([0.64,0.33],[0.30,0.60],[0.15,0.06]);
	$whitepoint = [0.3127,0.3290,'D65'];
} elsif (0) {
	$filename = 'CIE1931xy_AdobeRGB.svg';
	@primaries = ([0.64,0.33],[0.21,0.71],[0.15,0.06]);
	$whitepoint = [0.3127,0.3290,'D65'];
} elsif (0) {
	@primaries = ([0.7347,0.2653],[0.2738,0.7174],[0.1666,0.0089]);
	$whitepoint = [1/3, 1/3, 'E'];
	$filename = 'CIE1931xy_CIERGB.svg';
}

# in 5 nm steps from 360 to 830 nm, from http://www-cvrl.ucsd.edu/database/data/cmfs/ciexyz31.txt
my @xcmf = (
	0.0001299,0.0002321,0.0004149,0.0007416,0.001368,
	0.002236,0.004243,0.00765,0.01431,0.02319,
	0.04351,0.07763,0.13438,0.21477,0.2839,
	0.3285,0.34828,0.34806,0.3362,0.3187,
	0.2908,0.2511,0.19536,0.1421,0.09564,
	0.05795001,0.03201,0.0147,0.0049,0.0024,
	0.0093,0.0291,0.06327,0.1096,0.1655,
	0.2257499,0.2904,0.3597,0.4334499,0.5120501,
	0.5945,0.6784,0.7621,0.8425,0.9163,
	0.9786,1.0263,1.0567,1.0622,1.0456,
	1.0026,0.9384,0.8544499,0.7514,0.6424,
	0.5419,0.4479,0.3608,0.2835,0.2187,
	0.1649,0.1212,0.0874,0.0636,0.04677,
	0.0329,0.0227,0.01584,0.01135916,0.008110916,
	0.005790346,0.004109457,0.002899327,0.00204919,0.001439971,
	0.0009999493,0.0006900786,0.0004760213,0.0003323011,0.0002348261,
	0.0001661505,0.000117413,0.00008307527,0.00005870652,0.00004150994,
	0.00002935326,0.00002067383,0.00001455977,0.00001025398,0.000007221456,
	0.000005085868,0.000003581652,0.000002522525,0.000001776509,0.000001251141);
my @ycmf = (
	0.000003917,0.000006965,0.00001239,0.00002202,0.000039,
	0.000064,0.00012,0.000217,0.000396,0.00064,
	0.00121,0.00218,0.004,0.0073,0.0116,
	0.01684,0.023,0.0298,0.038,0.048,
	0.06,0.0739,0.09098,0.1126,0.13902,
	0.1693,0.20802,0.2586,0.323,0.4073,
	0.503,0.6082,0.71,0.7932,0.862,
	0.9148501,0.954,0.9803,0.9949501,1,
	0.995,0.9786,0.952,0.9154,0.87,
	0.8163,0.757,0.6949,0.631,0.5668,
	0.503,0.4412,0.381,0.321,0.265,
	0.217,0.175,0.1382,0.107,0.0816,
	0.061,0.04458,0.032,0.0232,0.017,
	0.01192,0.00821,0.005723,0.004102,0.002929,
	0.002091,0.001484,0.001047,0.00074,0.00052,
	0.0003611,0.0002492,0.0001719,0.00012,0.0000848,
	0.00006,0.0000424,0.00003,0.0000212,0.00001499,
	0.0000106,0.0000074657,0.0000052578,0.0000037029,0.0000026078,
	0.0000018366,0.0000012934,0.00000091093,0.00000064153,0.00000045181);
my @zcmf = (
	0.0006061,0.001086,0.001946,0.003486,0.006450001,
	0.01054999,0.02005001,0.03621,0.06785001,0.1102,
	0.2074,0.3713,0.6456,1.0390501,1.3856,
	1.62296,1.74706,1.7826,1.77211,1.7441,
	1.6692,1.5281,1.28764,1.0419,0.8129501,
	0.6162,0.46518,0.3533,0.272,0.2123,
	0.1582,0.1117,0.07824999,0.05725001,0.04216,
	0.02984,0.0203,0.0134,0.008749999,0.005749999,
	0.0039,0.002749999,0.0021,0.0018,0.001650001,
	0.0014,0.0011,0.001,0.0008,0.0006,
	0.00034,0.00024,0.00019,0.0001,0.00004999999,
	0.00003,0.00002,0.00001,0,0,
	0,0,0,0,0,
	0,0,0,0,0,
	0,0,0,0,0,
	0,0,0,0,0,
	0,0,0,0,0,
	0,0,0,0,0,
	0,0,0,0,0);

my @x = map { $xcmf[$_]/($xcmf[$_]+$ycmf[$_]+$zcmf[$_]) } 0..$#xcmf;
my @y = map { $ycmf[$_]/($xcmf[$_]+$ycmf[$_]+$zcmf[$_]) } 0..$#xcmf;

sub Normalize {
	my @a = @_;
	my $n = 0;
	for my $i (@a) { $n += $i*$i }
	$n = 1/sqrt($n); 
	for my $i (@a) { $i *= $n }
	@a
}
sub Tick {
	my $i = ($_[0] - 360) / 5;
	my ($px,$py) = Normalize($x[$i]-$x[$i-1], $y[$i]-$y[$i-1]);
	my ($qx,$qy) = Normalize($x[$i+1]-$x[$i], $y[$i+1]-$y[$i]);
	my ($tx,$ty) = Normalize($px+$qx, $py+$qy);
	return (X($x[$i]), Y($y[$i]), $ty * -$_[1], $tx * -$_[1]);
}

our $scale = 512;
our ($padleft,$padtop,$padright,$padbot) = (60,15,25,50);
our ($maxx, $maxy) = (0.8,0.9);
our ($origin_x, $origin_y) = ($padleft, $padtop + $maxy * $scale);
our ($imgwidth, $imgheight) = ($origin_x + $maxx * $scale + $padright, $origin_y + $padbot);

sub X { $origin_x + $scale * $_[0] }
sub Y { $origin_y - $scale * $_[0] }

my $svg = new Svg(width => $imgwidth, height => $imgheight);
#$svg->rect(width => $imgwidth, height => $imgheight, fill => 'gray');

# semitransparent grid
my $grid = new Svg::PathString;
for my $xx (1..$maxx*20) {
	my $x = $xx * 0.05;
	my $y = min($maxy, 1-$x);
	$grid->M(halfpixel(X($x)), halfpixel(Y(0)))->l(0, -$scale*$y);
}
for my $yy (1..$maxy*20) {
	my $y = $yy * 0.05;
	my $x = min($maxx, 1-$y);
	$grid->M(halfpixel(X(0)), halfpixel(Y($y)))->l($scale*$x, 0);
}
$grid->M(halfpixel(X(1-$maxy)), halfpixel(Y($maxy)))->L(halfpixel(X($maxx)), halfpixel(Y(1-$maxx)));
$svg->path(opacity => 1/8, stroke => 'black', 'stroke-width' => 1, fill => 'none', d => $grid->get());

$svg->defs->path(id => 'border', d => MakePath(\@x, \@y, $scale, -$scale, $origin_x, $origin_y, 1));
$svg->clipPath(id => 'clipborder')->use('border');

# black stroke on the monochromatic locus (the inner half of the stroke gets overwritten by the image)
$svg->use('border', stroke => 'black', 'stroke-width' => 4, fill => 'none');

# frequency tick marks on the monochromatic locus
my $ticks = '';
for (my $i = 410; $i <= 695; $i += 5) {
	my ($x,$y,$tx,$ty) = Tick($i, $i % 20 ? 6 : 10);
	$ticks .= 'M' . tenth($x) . ',' . tenth($y) . 'l' . tenth($tx) . ',' . tenth($ty);
}
$svg->path(d => $ticks, stroke => 'black', 'stroke-width' => 1);

# color PNG
my $pnggroup = $svg->group('clip-path' => 'url(#clipborder)');
$pnggroup->filter(id => 'blur')->feGaussianBlur(stdDeviation => 0.5);
$pnggroup->image('chromaticity1.png', width => 27, height => 28, filter => 'url(#blur)')->scale(1/32 * $scale)->translate($origin_x - 3/64 * $scale, $origin_y - 27.5/32 * $scale);

# coordinate axes
my $axes = new Svg::PathString;
$axes->M(round(X(0)), round(Y($maxy)))->l(0,round($scale*$maxy))->l(round($scale*$maxx),0);
for my $xx (0..$maxx*20) {
	$axes->M(round(X($xx*0.05)), round(Y(0)))->l(0,4);
}
for my $yy (0..$maxy*20) {
	$axes->M(round(X(0)), round(Y($yy*0.05)))->l(-4,0);
}
$svg->path(stroke => 'black', 'stroke-width' => 2, 'stroke-linecap' => 'square', fill => 'none', d => $axes->get());

my $alltext = $svg->group('font-family' => 'Nimbus Roman No9 L, Times, serif', 'font-size' => 19, stroke => 'none');
my $halfdigit = 6; # half the height of a digit, since Opera doesn't support dominant-baseline

# labels for frequency tick marks
my $freqs = $alltext->group(fill => 'blue');
for (my $i = 460; $i <= 620; $i += 20) {
	my ($x,$y,$tx,$ty) = Tick($i,12);
	my $xanchor = $ty < -2*abs($tx) ? 'middle' : $tx > 0 ? 'start' : 'end';
	my $yshift = $tx < -2*abs($ty) || $ty > 0 ? $halfdigit : 0;
	$freqs->text(x => tenth($x+$tx), y => tenth($y+$ty+$yshift), 'text-anchor' => $xanchor)->add($i);
}

# x,y axis labels
my $coords = $alltext->group(fill => 'black');
my $xcoords = $coords->group('text-anchor' => 'middle');
$xcoords->text(x => X($maxx/2), y => $origin_y + 40, 'font-style' => 'italic')->add('x');
for my $x (0..$maxx*10) {
	$xcoords->text(x => X($x * 0.1), y => $origin_y + 20)->add("0.$x");
}
my $ycoords = $coords->group('text-anchor' => 'end');
$ycoords->text(x => $origin_x - 40, y => Y($maxy/2)+$halfdigit, 'font-style' => 'italic')->add('y');
for my $y (0..$maxy*10) {
	$ycoords->text(x => $origin_x - 8, y => Y($y * 0.1)+$halfdigit)->add("0.$y");
}

# gamut polygon and whitepoint
if (@primaries || $whitepoint) {
	my $primary_polygon = $svg->group(stroke => 'black', 'stroke-width' => 2, fill => 'none');
	my $primary_polygon_circle_radius = 5;
	for my $p (0..$#primaries) {
		my ($a,$b) = @primaries[$p, $p == $#primaries ? 0 : $p+1];
		$primary_polygon->circle(cx => X($$a[0]), cy => Y($$a[1]), r => $primary_polygon_circle_radius);
		my ($dx,$dy) = ($scale * ($$a[0]-$$b[0]), -$scale * ($$a[1]-$$b[1]));
		my $nudge = $primary_polygon_circle_radius / sqrt($dx*$dx + $dy*$dy);
		my ($nudgex,$nudgey) = ($nudge * $dx, $nudge * $dy);
		$primary_polygon->line(x1 => round(X($$a[0])-$nudgex), y1 => round(Y($$a[1])-$nudgey), x2 => round(X($$b[0])+$nudgex), y2 => round(Y($$b[1])+$nudgey));
	}
	if ($whitepoint) {
		$primary_polygon->circle(cx => X($$whitepoint[0]), cy => Y($$whitepoint[1]), r => $primary_polygon_circle_radius);
		if (defined $$whitepoint[2]) {
			$alltext->text(x => X($$whitepoint[0]) + 8, y => Y($$whitepoint[1]) + 16, fill => 'black')->add($$whitepoint[2]);
		}
	}
}

$svg->write($filename);

الشروحات

أضف شرحاً من سطر واحد لما يُمثِّله هذا الملف

العناصر المصورة في هذا الملف

يُصوِّر

٢٤ سبتمبر 2009

٦٬٣٦١ بايت

٥٢٦ بكسل

٤٩٥ بكسل

تاريخ الملف

اضغط على زمن/تاريخ لرؤية الملف كما بدا في هذا الزمن.

زمن/تاريخصورة مصغرةالأبعادمستخدمتعليق
حالي٠١:٥٧، ٢٥ سبتمبر ٢٠٠٩تصغير للنسخة بتاريخ ٠١:٥٧، ٢٥ سبتمبر ٢٠٠٩٤٩٥ × ٥٢٦ (٦ كيلوبايت)wikimediacommons>BenRG{{Information |Description=CIE 1931 xy color space diagram. Drawn (or rather programmatically generated) from scratch, but the visual design is based on File:CIExy1931.svg. Major differences: *Colors outside the sRGB triangle are clipped toward the s

الصفحة التالية تستخدم هذا الملف: