مبدل رياضي

من testwiki
مراجعة ١٠:٤٢، ١ مايو ٢٠٢٤ بواسطة imported>Mr.Ibrahembot (بوت:نقل من تصنيف:جبر تجريدي إلى تصنيف:جبر مجرد)
(فرق) → مراجعة أقدم | المراجعة الحالية (فرق) | مراجعة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث

المبدل الرياضي في الرياضيات يعطي مؤشرا على مدى فشل عملية ثنائية معينة بأن تكون تبادلية. هناك تعاريف مختلفة تستخدم في إطار نظرية الزمر ونظرية الحلقات.

نظرية الزمر

العاكس من عنصرين g و h من زمرة G، هو العنصر:

قالب:تعبير رياضي.

وهو يساوي مطابقة الزمرة إذا وفقط إذا g و h يتبادلان (أي إذا وفقط إذا hg=gh). ويطلق على الزمرة الجزئية من الزمرة التي تولدها كل عمليات التبادل زمرة مشتقة أو زمرة المبدلات الجزئية من G. يجب الملاحظة أنه لا بد من النظر في الزمرة الجزئية الناتجة عن مجموعة من المبدلات لأنه بشكل عام لا تكون مجموعة المبدلات مغلقة في إطار عملية الزمرة. تستخدم المبدلات لتحديد طبيعة الزمرة ما إذا كانت زمرة عديمة القوى nilpotent أو زمرة قابلة للحلحلة. يستخدم تعريف المبدل أعلاه من قبل بعض منظري الزمرة وكذلك خلال هذه المقالة. ومع ذلك، فإن العديد من منظرين الزمرة الآخرين يحددون المبدل كما في المعادلة :

قالب:تعبير رياضي.[١][٢]

المطابقات (نظرية الزمرة)

مطابقات المبدل هي أداة هامة في نظرية الزمرة.[٣] التعبير قالب:تعبير رياضي يعني أن مترافقة قالب:Mvar على قالب:Mvar, تعرف كقالب:تعبير رياضي.

  1. xy=x[x,y].
  2. [y,x]=[x,y]1.
  3. [x,zy]=[x,y][x,z]y and [xz,y]=[x,y]z[z,y].
  4. [x,y1]=[y,x]y1 and [x1,y]=[y,x]x1.
  5. [[x,y1],z]y[[y,z1],x]z[[z,x1],y]x=1 and [[x,y],zx][[z,x],yz][[y,z],xy]=1.

مراجع

قالب:مراجع

وصلات خارجية

قالب:شريط بوابات

قالب:ضبط استنادي

قالب:بذرة رياضيات