طوبولوجيا إقليدسية

من testwiki
مراجعة ٠١:٣٣، ٩ فبراير ٢٠٢٣ بواسطة imported>Mr.Ibrahembot (بوت:صيانة المراجع)
(فرق) → مراجعة أقدم | المراجعة الحالية (فرق) | مراجعة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث

قالب:يتيمة

في الرياضيات، وبالأخص في الطوبولوجيا العامة، تُعتبر الطوبولوجيا الإقليدسية مثالاً للطوبولوجيا المعطاة لمجموعة الأعداد الحقيقية، التي يرمز لها بالرمز R. ولإعطاء مجموعة الأعداد الحقيقية R طوبولوجيا يعني أي المجموعات الفرعية للمجموعة R "مفتوحة"، ولفعل ذلك بطريقة تحقق المسلمات التالية:[١]

  1. اتحاد المجموعات المفتوحة يكون مجموعة مفتوحة.
  2. التقاطع المتناهي للمجموعات المفتوحة يكون مجموعة مفتوحة.
  3. المجموعة R والمجموعة الخالية ∅ هما مجموعتان مفتوحتان.

البنية

لابد أن تكون المجموعة R والمجموعة الخالية ∅ مجموعتين مفتوحتين، لذلك فإننا نحدد المجموعتين R و∅ على أنهما مجموعتان مفتوحتان في هذه الطوبولجيا. وفي حالة وجود اثنين من الأعداد الحقيقية، لنفترض وجود x وy، مع كون قالب:بدون لف فإننا نحدد عائلة لانهائية العدد للمجموعات المفتوحة والتي يُرمز إليها بالرمز Sx,y كما يلي:[١]

Sx,y={r𝐑:x<r<y}.

ومع المجموعة R والمجموعة الخالية ∅، تستخدم المجموعات Sx,y مع استخدام قالب:بدون لف كأساس للطوبولوجيا الإقليدسية. وبعبارة أخرى، فإن المجموعات المفتوحة للطوبولوجيا الإقليدسية تُعطى من المجموعة R، والمجموعة الخالية ∅، والاتحادات والتقاطعات المتناهي للمجموعات Sx,y المتنوعة لأزواج (x,y) المختلفة.

الخصائص

المراجع

قالب:مراجع قالب:شريط بوابات

قالب:بذرة طوبولوجيا