مربعات دنيا

من testwiki
مراجعة ١٤:٣٧، ٢٩ يناير ٢٠٢٥ بواسطة imported>Meno25
(فرق) → مراجعة أقدم | المراجعة الحالية (فرق) | مراجعة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث

قالب:بطاقة طريقة علمية قالب:تحليل الانحدار

نتيجة الإسقاط الشكلي لمجموعة نقاط على دالة من الدرجة الثانية.

طريقة المربعات الصغرى أو الدنيا قالب:إنج هي مقاربة رئيسية تستعمل في الاحصاء، وبالتحديد في تحليل الانحدار. تهدف إلى تقدير خط الانحدار الذي يؤدي إلى تقليل مجموع الانحرافات الرئيسية أو الأخطاء الواردة في النقاط التي تمت ملاحظتها في خط الانحدار أي يتم التقليل من مجموع مربعات الفروق بين القيم الفعلية والقيم المحسوبة.[١][٢][٣] ويمكن القول أيضا انها طريقة تقريب قياسية تستخدم لحل أنظمة المعادلات التي يكون فيها عدد المعادلات أكبر من عدد المتغيرات. «المربعات الدنيا» تعني بأن الحل الكلي يتجه نحو تصغير قيمة مجموع مربعات الخطأ الناتج عن حل كل معادلة.

من أهم التطبيقات هو الإسقاط الشكلي للبيانات (data fitting). حيث أن أفضل إسقاط شكلي لمجموعة بيانات يتجه نحو تصغير مجموع مربعات الأخطاء، حيث أن الخطأ هو الفرق بين القيمة المقاسة للبيانات والقيمة المسقطة على الشكل. تم وصف مسألة المربعات الدنيا للمرة الأولى من قبل كارل غاوس حوالي عام 1794.

التاريخ

عمل العالم بيير لابلاس في هذا المجال.

كارل فريدريش غاوس

يعود أول عرض واضح ودقيق حول طريقة المربعات الدنيا إلى عالم الرياضيات الفرنسي أدريان ماري ليجاندر. نشره في عام 1805.

نص المعضلة

تتمثل معضلة المربعات الدنيا في ايجاد قيمة معينة لمختلف الوسيطات اللائي يعرفن نموذجا معينا حيث يُقترب بأفضل شكل من المعطيات. تتمثل مجموعة المعطيات في مجموعة من النقط (أزواج) (xi,yi), i = 1, …, n، حيث xi هو متغير مستقل وحيث yi متغير تابع حُصل عليه بفضل الملاحظة.

ri=yif(xi,β).
The residuals are plotted against corresponding x values. The random fluctuations about ri=0 indicate a linear model is appropriate.
S=i=1nri2.

مثال

انظر إلى قانون هوك.

y=f(F,k)=kF
yi=kFi+εi.

انظر أيضا

مراجع

قالب:مراجع قالب:مصادر طبية قالب:شريط بوابات قالب:جبر خطي قالب:ضبط استنادي قالب:روابط شقيقة

قالب:بذرة رياضيات قالب:بذرة إحصاء واحتمالات