معادلة داروين-راداو

من testwiki
مراجعة ٠٢:١٠، ١٢ يونيو ٢٠٢٣ بواسطة imported>MenoBot (بوت: إصلاح أخطاء فحص ويكيبيديا من 1 إلى 104)
(فرق) → مراجعة أقدم | المراجعة الحالية (فرق) | مراجعة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث

قالب:يتيمة في الفيزياء الفلكية، تعطي معادلة داروين-رادو (التي سميت باسم رودولف رادو و تشارلز غالتون داروين) علاقة تقريبية بين لحظة عامل القصور الذاتي لجسم كوكبي وسرعته الدورانية وشكلها. ترتبط لحظة عامل القصور الذاتي مباشرة بأكبر لحظات القصور الذاتي، C. يُفترض أن الجسم الدوار في حالة توازن هيدروستاتيكي وهو شكل سطح كروي. تنص معادلة داروين-راداو على:[١]

CMRe2=23λ=23(1251+η)

حيث تمثل M و Re الكتلة وتعني نصف القطر الاستوائي للجسم. هنا λ هو معامل داليمبرت وتعرف معامل راداو على أنه

η=5q2ϵ2

حيث أن q هي الثابت الديناميكي

q=ω2Re3GM

و ε هي التفلطح

ϵ=ReRpRe

حيث Rp هو نصف القطر القطبي المتوسط و Re هو نصف القطر الاستوائي المتوسط.

حيث الأرض، q3.461391×103 و ϵ1/298.257، ينتج عنها CMRe20.3313، تقريب جيد للقيمة المقاسة 0.3307.[٢]

المراجع

قالب:مراجع قالب:شريط بوابات

قالب:بذرة فيزياء